On the generalized reflexive and anti-reflexive solutions to a system of matrix equations
نویسندگان
چکیده
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملThe .p;q/ Generalized Anti-reflexive Extremal Rank Solutions to a System of Matrix Equations
Let n n complex matrices P andQ be nontrivial generalized reflection matrices, i.e., P D P D P 1 ¤ In, Q DQ DQ 1 ¤ In. A complex matrix A with order n is said to be a .P;Q/ generalized anti-reflexive matrix, if PAQ D A. We in this paper mainly investigate the .P;Q/ generalized anti-reflexive maximal and minimal rank solutions to the system of matrix equation AX D B . We present necessary and su...
متن کاملAnti-reflexive Solutions for a Class of Matrix Equations
In this paper, the generalized anti-reflexive solution for matrix equations (BX = C , XD = E), which arise in left and right inverse eigenpairs problem, is considered. With the special properties of generalized anti-reflexive matrices, the necessary and sufficient conditions for the solvability and a general expression of the solution are obtained. Furthermore, the related optimal approximation...
متن کاملfinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$. an $ntimes n$ complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$). in this paper, we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...
متن کاملMinimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices
Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., R = R = R−1 = ±Im and S = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize ‖AX−Z‖2+‖Y HA−WH‖2, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2012.07.004